Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
arxiv; 2023.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2311.13724v1

Résumé

The COVID-19 pandemic has highlighted the need to upgrade systems for infectious disease surveillance and forecasting and modeling of the spread of infection, both of which inform evidence-based public health guidance and policies. Here, we discuss requirements for an effective surveillance system to support decision making during a pandemic, drawing on the lessons of COVID-19 in the U.S., while looking to jurisdictions in the U.S. and beyond to learn lessons about the value of specific data types. In this report, we define the range of decisions for which surveillance data are required, the data elements needed to inform these decisions and to calibrate inputs and outputs of transmission-dynamic models, and the types of data needed to inform decisions by state, territorial, local, and tribal health authorities. We define actions needed to ensure that such data will be available and consider the contribution of such efforts to improving health equity.


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297581

Résumé

ImportanceCOVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. ObjectiveTo project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). DesignThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. SettingThe entire United States. ParticipantsNone. ExposureAnnually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measuresEnsemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. ResultsFrom April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and RelevanceCOVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease. Key pointsO_ST_ABSQuestionC_ST_ABSWhat is the likely impact of COVID-19 from April 2023-April 2025 and to what extent can vaccination reduce hospitalizations and deaths? FindingsUnder plausible assumptions about viral evolution and waning immunity, COVID-19 will likely cause annual epidemics peaking in November-January over the two-year projection period. Though significant, hospitalizations and deaths are unlikely to reach levels seen in previous winters. The projected health impacts of COVID-19 are reduced by 10-20% through moderate use of reformulated vaccines. MeaningCOVID-19 is projected to remain a significant public health threat. Annual vaccination can reduce morbidity, mortality, and strain on health systems.


Sujets)
COVID-19
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.28.23291998

Résumé

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.


Sujets)
COVID-19
4.
Velma Lopez; Estee Y Cramer; Robert Pagano; John M Drake; Eamon B O'Dea; Benjamin P Linas; Turgay Ayer; Jade Xiao; Madeline Adee; Jagpreet Chhatwal; Mary A Ladd; Peter P Mueller; Ozden O Dalgic; Johannes Bracher; Tilmann Gneiting; Anja Mühlemann; Jarad Niemi; Ray L Evan; Martha Zorn; Yuxin Huang; Yijin Wang; Aaron Gerding; Ariane Stark; Dasuni Jayawardena; Khoa Le; Nutcha Wattanachit; Abdul H Kanji; Alvaro J Castro Rivadeneira; Sen Pei; Jeffrey Shaman; Teresa K Yamana; Xinyi Li; Guannan Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Lily Wang; Yueying Wang; Shan Yu; Daniel J Wilson; Samuel R Tarasewicz; Brad Suchoski; Steve Stage; Heidi Gurung; Sid Baccam; Maximilian Marshall; Lauren Gardner; Sonia Jindal; Kristen Nixon; Joseph C Lemaitre; Juan Dent; Alison L Hill; Joshua Kaminsky; Elizabeth C Lee; Justin Lessler; Claire P Smith; Shaun Truelove; Matt Kinsey; Katharine Tallaksen; Shelby Wilson; Luke C Mullany; Lauren Shin; Kaitlin Rainwater-Lovett; Dean Karlen; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dave Osthus; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Xinyue Xiong; Ana Pastore y Piontti; Shun Zheng; Zhifeng Gao; Wei Cao; Jiang Bian; Chaozhuo Li; Xing Xie; Tie-Yan Liu; Juan Lavista Ferres; Shun Zhang; Robert Walraven; Jinghui Chen; Quanquan Gu; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Graham Casey Gibson; Daniel Sheldon; Ajitesh Srivastava; Aniruddha Adiga; Benjamin Hurt; Gursharn Kaur; Bryan Lewis; Madhav Marathe; Akhil S Peddireddy; Przemyslaw Porebski; Srinivasan Venkatramanan; Lijing Wang; Pragati V Prasad; Alexander E Webber; Jo W Walker; Rachel B Slayton; Matthew Biggerstaff; Nicholas G Reich; Michael A Johansson.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.05.30.23290732

Résumé

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naive baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. Author SummaryAs SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a critical role in predicting how the epidemic could take shape. Short-term forecasts of epidemic outcomes (for example, infections, cases, hospitalizations, or deaths) provided useful information to support pandemic planning, resource allocation, and intervention. Yet, infectious disease forecasting is still a nascent science, and the reliability of different types of forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were often unreliable. For example, forecasts did not anticipate the speed of increase in cases in early winter 2020. This analysis provides insights on specific problems that could be addressed in future research to improve forecasts and their use. Identifying the strengths and weaknesses of forecasts is critical to improving forecasting for current and future public health responses.


Sujets)
COVID-19 , Mort , Maladies transmissibles
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.20.22277849

Résumé

The COVID-19 pandemic has impacted many facets of human behavior, including human mobility partially driven by the implementation of non-pharmaceutical interventions (NPIs) such as stay at home orders, travel restrictions, and workplace and school closures. Given the importance of human mobility in the transmission of SARS-CoV-2, there have been an increase in analyses of mobility data to understand the COVID-19 pandemic to date. However, despite an abundance of these analyses, few have focused on Sub-Saharan Africa (SSA). Here, we use mobile phone calling data to provide a spatially refined analysis of sub-national human mobility patterns during the COVID-19 pandemic from March 2020-July 2021 in Zambia. Overall, among highly trafficked intra-province routes, mobility decreased up to 52% from March-May 2020 compared to baseline, which was also the time period of the strictest NPIs. However, despite dips in mobility during the first wave of COVID-19 cases, mobility returned to baseline levels and did not drop again suggesting COVID-19 cases did not influence mobility in subsequent waves.


Sujets)
COVID-19
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.18.22273992

Résumé

Background Infectious disease modeling can serve as a powerful tool for science-based management of outbreaks, providing situational awareness and decision support for policy makers. Predictive modeling of an emerging disease is challenging due to limited knowledge on its epidemiological characteristics. For COVID-19, the prediction difficulty was further compounded by continuously changing policies, varying behavioral responses, poor availability and quality of crucial datasets, and the variable influence of different factors as the pandemic progresses. Due to these challenges, predictive modeling for COVID-19 has earned a mixed track record. Methods We provide a systematic review of prospective, data-driven modeling studies on population-level dynamics of COVID-19 in the US and conduct a quantitative assessment on crucial elements of modeling, with a focus on the aspects of modeling that are critical to make them useful for decision-makers. For each study, we documented the forecasting window, methodology, prediction target, datasets used, geographic resolution, whether they expressed quantitative uncertainty, the type of performance evaluation, and stated limitations. We present statistics for each category and discuss their distribution across the set of studies considered. We also address differences in these model features based on fields of study. Findings Our initial search yielded 2,420 papers, of which 119 published papers and 17 preprints were included after screening. The most common datasets relied upon for COVID-19 modeling were counts of cases (93%) and deaths (62%), followed by mobility (26%), demographics (25%), hospitalizations (12%), and policy (12%). Our set of papers contained a roughly equal number of short-term (46%) and long-term (60%) predictions (defined as a prediction horizon longer than 4 weeks) and statistical (43%) versus compartmental (47%) methodologies. The target variables used were predominantly cases (89%), deaths (52%), hospitalizations (10%), and R_t (9%). We found that half of the papers in our analysis did not express quantitative uncertainty (50%). Among short-term prediction models, which can be fairly evaluated against truth data, 25% did not conduct any performance evaluation, and most papers were not evaluated over a timespan that includes varying epidemiological dynamics. The main categories of limitations stated by authors were disregarded factors (39%), data quality (28%), unknowable factors (26%), limitations specific to the methods used (22%), data availability (16%), and limited generalizability (8%). 36% of papers did not list any limitations in their discussion or conclusion section. Interpretation Published COVID-19 models were found to be consistently lacking in some of the most important elements required for usability and translation, namely transparency, expressing uncertainty, performance evaluation, stating limitations, and communicating appropriate interpretations. Adopting the EPIFORGE 2020 guidelines would address these shortcomings and improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. We also discovered that most of the operational models that have been used in real-time to inform decision-making have not yet made it into the published literature, which highlights that the current publication system is not suited to the rapid information-sharing needs of outbreaks. Furthermore, data quality was identified to be one of the most important drivers of model performance, and a consistent limitation noted by the modeling community. The US public health infrastructure was not equipped to provide timely, high-quality COVID-19 data, which is required for effective modeling. Thus, a systematic infrastructure for improved data collection and sharing should be a major area of investment to support future pandemic preparedness.


Sujets)
COVID-19 , Urgences , Mort
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271905

Résumé

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.28.21262748

Résumé

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.


Sujets)
COVID-19 , Mort
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.09.21261554

Résumé

Since the emergence of SARS-CoV-2, vaccines have been heralded as the best way to curtail the pandemic. Clinical trials have shown SARS-CoV-2 vaccines to be highly efficacious against both disease and infection. However, those currently in use were primarily tested against early lineages. Data on vaccine effectiveness (VE) against variants of concern (VOC), including the Delta variant (B.1.617.2), remain limited. To examine the effectiveness of vaccination in Utah we compared the proportion of cases reporting vaccination to that expected at different VEs, then estimated the combined daily vaccine effectiveness using a field evaluation approach. Delta has rapidly outcompeted all other variants and, as of June 20th, represents 70% of all SARS-CoV-2 viruses sequenced in Utah. If we attribute the entire change in VE to the Delta variant, the estimated vaccine effectiveness against Delta would be 82% (95% CI: 78%, 85%). We show a modest reduction in vaccine effectiveness against COVID-19 in Utah corresponding to the expansion of the Delta lineage in the state. This reduction in the effectiveness of available vaccines correlated with the arrival of novel VOCs, rather than waning immunity, is highly concerning.


Sujets)
COVID-19
10.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3561565

Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche